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Abstract

The throughput of a communication system serving
bursty multimedia traffic can be characterized by the
admission region: all possible sets of multimedia
sources the system can accommodate given the
sources statistical characteristics and Quality of
Service (QoS ) requirements.  Since throughput

depends on the system resources (bandwidth and
buffering space) as well as the resource management
strategies, it is natural to define the system capacity
as the upper limit on the admission region over all
physically feasible strategies.  This paper estimates
the capacity of a buffered communication channel
serving multimedia traffic with QoS  requirements

on the maximum allowable traffic delay and loss.
The buffer is assumed large enough to make the
channel capacity the limiting resource.  Given the set
of multimedia sources within the system capacity, the
paper also discusses the scheduling disciplines that
provide the required QoS .

1. Introduction

Emerging multimedia networks will statistically
multiplex bursty multimedia traffic sources with
vastly different statistical characteristics and Quality
of Service (QoS ) requirements.  In presence of

multimedia traffic, different classes of resource
(bandwidth and buffer space) management strategies
can be compared on the basis of the admission
region.  The admission region represents all possible
sets of multimedia sources the system can
accommodate with the corresponding strategies,
given the system resources, and QoS  requirements.

We consider a single buffered communication
channel serving multimedia traffic with QoS

requirements on maximum allowable cell loss
probability and delay.  Due to limited paper space we
assume that the buffer is large enough to make the
channel capacity (not the buffering space) the
limiting resource.  This situation is typical for
wireless communication.  We assume that J  Classes
of Service (CoS ) are statistically multiplexed
through a large buffer on a communication link with
a constant bit rate C .  CoS j  includes jK  identical

sources with the following QoS  requirements:

(1)     max
jj LL ≤ ,    max

jj dd ≤

where jL  and jd  are the traffic loss probability and

delay respectively.  Given the scheduling discipline
S  and QoS  requirements (1), the admission region

)(SA  represents all possible sets of multimedia users

)(),..,( 1 SAKK J ∈=K  the system can

accommodate.  We assume the buffer management
strategy which accepts all arriving traffic into the
buffer and drops a cell of class j  from the buffer

once the cell current delay exceeds the limit max
jd  to

prevent wasting the channel capacity on an outdated
traffic.  Obviously, this buffer management strategy
is optimal in terms of maximizing the admission
region for a sufficiently large buffer but can be
improved for small buffers.

It is natural to define the system capacity region as
the upper limit of the admission region )(SA  over all

scheduling disciplines S :

(2) U
S

SA )(=A



Assuming that the statistical properties of the sources
are known, the paper approximates the capacity
region (2) as a function of the channel bit rate C  and
QoS  requirements (1):

),..,;,..,;( maxmax
1

maxmax
1 JJ ddC γγÁA = .  The paper

also discusses scheduling disciplines S  which
closely approach the capacity region (1).  We
consider the following large deviations asymptotic

regime: ,∞→C  ,0max →jL  )1(max Od j = ,

)1()(log maxmax OCL jj =−=γ .  It is known [1] that

under this regime the statistical properties of the
sources can be characterized by the effective
bandwidths:

(3)      )]}({exp[log
1

),( tsxE
st

ts jkj =α

where )(tx jk is the amount of traffic generated by a

source k  of class j  during time interval ),0[ t .    We

assume that processes )(tx jk  have stationary

increments and are jointly statistically independent
for .,..,1,,..,1 JjKk j ==   The average rate of a

source of class j  is ),(lim 0 tsjsj αλ +→= .

The paper is organized as follows. Section 2
conjectures the distributional version of the Little
theorem.  Section 3 approximates the capacity region
in a case of uniform loss and CoS  specific delay

requirements: ,maxLL j ≤  max
jj dd ≤ .  Section 4

approximate the capacity region in a case of CoS
(1).  Finally, section 5 illustrates our results in a case
of 2=J  classes of service and Brownian traffic
sources.

2. The Conservation Laws

In a case of uniform QoS  requirements maxLL j ≤ ,
maxdd j ≤ , the corresponding capacity region

),,( maxmax dC γuA  can be realized with the First In

First Out ( FIFO ) scheduling.  It is known [1] that

the boundary of this region uA∂  is closely
approximated by an appropriately chosen linear

hyperplane.  Following [2]-[3], we may pick a point

K
~

 on uA∂  and obtain the tangent hyperplane to
uA∂  which tauches uA∂  at K

~
:

(4)        CdeK j
j

j =∑ )
~

,,( maxmax Kγ

where a parameter ),,( KTe j γ  can be justifiably

called the effective rate of a source of class j .  The

effective rates  ),,( KTe j γ  depend on the traffic

mixture K  and can be calculated if the effective
bandwidths (3) are known [1].

Consider a system that statistically multiplexes a
traffic mixture ),..,( 1 JKK=K  on a channel of

capacity C  through an infinite buffer. Assuming that
scheduling discipline treats all sources of the same
class equally, let ),( Kγjj DD =  and ),( KTbb jj =

be given by γC
jjk eDd −=≥ }Pr{  and

][ TCEb jkj ≥= Σββ  where jkd  and  jkβ  are the

delay and backlog respectively for a traffic generated

by a source k  of class j , and ∑=Σ kj jk,
ββ  is the

total backlog.  Given a traffic mixture K  and a pair
( T,γ ) such that

(5)         γβ CeTCob −
Σ =≥ }{Pr

we conjecture the following inequality:

(6)  ),()],([),,( KKK TbDddETe jjjkjkj ≥≥ γγ

for any scheduling discipline.  This inequality can be
interpreted as a distributional version of the Little

theorem [4].  If CK
j jj <∑ λ , 0→γ , then

jj Te λγ →),,( K , 0→jD , 0→jb  and, as a

result, (6) reduces to the Little theorem:
][][ jkjkj EdE βλ = .  Inequality (6) also holds if the

traffic mixture includes only identical sources.  In this
particular case equality in (6) can be realized with the
First In First Out ( FIFO ) scheduling discipline.
There is a number of arguments which can be put
forward to suggest that (6) holds (at least



approximately) in a general case and the boundaries
in (6) can be closely approached for all Jj ,..,1=
simultaneously with the Earliest Due Date scheduling
discipline ),..,( 1 JDDEDD  [5].

We will use (5)-(6) to derive upper bounds on the
capacity region under the large deviations asymptotic

regime when jjjkjk DDddE →≥ ][ , and

consequently, (5)-(6) take the following form:

(7)   jjj bTeD ≥),,( Kγ   where ∑=
j

jjbK
C

T
1

3. The Capacity Region for Uniform Losses

Combining (4) with (7) we obtain the following
system:

(8)         ∑
∈

≥
J

K
j

jjj CTTeDK ),,(γ

(9)         CTeK j
j

j =∑
∈

),,( K
J

γ

for any  subset },..,2,1{ J⊆J .  Solving (9) for T
and then substituting this T  into (8) we obtain a

region (a simplex exterior)  ),(
~

CR KJ  in a parameter

space ),..,,( 1 JDDγ .  Intersection of these regions

I ),(
~

),(
~

CRCR KK J=  for all subsets },..,1{ J⊆J

upper bounds the attainable QoS  region

),( CR K },..,,{ 1 JDDγ=  in a case of uniform loss

probabilities: γγγ === J..1 .  Our hypotheses are

that region ),(ˆ CR K  in fact closely approximates

region ),( CR K : ≅),( CR K ),(
~

CR K , and the

QoS  region can be closely approached with the

),..,( maxmax
1 JddEDD  scheduling discipline.

Consider a case of uniform loss and service specific

delay requirements: maxLL j ≤ , max
jj dd ≤ ,

Jj ,..,1= .  Without loss of generality assume the

CoS  are arranged according to the stringency of the

QoS  requirements:  maxmax
2

max
1 .. Jddd ≤≤≤ .  All

traffic mixtures K  for which the attainable QoS
region (8)-(9)  contains the QoS  parameters

maxLLi = , max
ii dd = , },..,1{ ji ∈  form the following

region: }),..,,,({ 1
max CKKTeKKU jji

ji
iij ≤= ∑

≤

γ

where ),..,( 1 jjj KKTT =   is the solution to the

following fixed point equation:

∑
≤

=
ji

jjiiij KKTedK
C

T ),..,,,(
1

1
maxmax γ . Regions

jU , and, consequently, their

intersection I jU=U , Jj ,..,1=  upper bound

the capacity region (2) in a case of uniform losses

(10)       UA ⊆),..,,,( maxmax
1

max
JddC γ

Upper bound (10) is obtained by considering the
attainable QoS  regions (8)-(9) for J  subsets

},..,1{ j , Jj ,..,1=  of the set of services },..,1{ J .  It

can be shown that applying conservation laws to all
possible subsets of the set of services },..,1{ J  would

not produce a tighter upper bound on the capacity
region than (10).  We expect that the intersection U ,
in fact, closely approximates the capacity region (2)
for uniform losses:

(11)      UA ≅),..,,,( maxmax
1

max
JddC γ

and that the capacity region (11) can be closely

approached with the ),..,( maxmax
1 JddEDD

scheduling.

4. The Capacity Region in a General Case

First, consider a "homogeneous "case when the traffic
mixture consists only of sources of the same class j :

jiK i ≠= ,0 .  Given the QoS  requirements (1),

the corresponding capacity region ),,(Á maxmaxh
j jj dC γ

is ),,( maxmaxmax
jj

h
jjj dCeCKK γ=≤  where h

je  is

the corresponding "homogeneous" effective rate.

Consider all pairs ),( dγ  for which: ),,(Áh
j dC γ =

),,(Á maxmaxh
j jj dC γ , or, equivalently,



(12)        ),,( dCeh
j γ = ),,( maxmax

jj
h
j dCe γ

Equation (12) describes the trade-off between the
QoS  requirements on loss )(γ and delay )(d  in a

homogeneous case: jiK i ≠= ,0 .  Assuming that

this trade-off holds in a heterogeneous case, when a
mixture of different services is multiplexed on the
channel, one may try to approximate the
heterogeneous capacity region as follows:

(13)      ≅),..,;,..,;( maxmax
1

maxmax
1 JJ ddC γγA

             ),..,;;( 1 JddC γA≅

where region ),..,;;( 1 JddC γA  is approximated

according to (11), and ),;( maxmax
jjjj ddd γγ=  are

determined by (12) for some γ .  After implementing

this procedure for general traffic sources the resulting
approximate capacity region will depend on the
arbitrary parameter γ  since the trade-off between the

loss and delay depends on the traffic mixture.
However, for Brownian traffic sources [1] the

effective rate is  
d

de j
jj

γσ
λγ

2
),(

2

+= , equation

(12) takes the following form: maxmax // jjdd γγ =

and, consequently, the right-hand side of
approximation (12) is independent of the parameter
γ .  Arrange services as follows: Jωω ≤≤ ..1 , where

maxmax / jjj d γω = . Using (11)-(13) we can

approximate the capacity region in a case of QoS
requirements (1) and Brownian traffic sources as
follows:

 (14)     ≅),..,;,..,;( maxmax
1

maxmax
1 JJ ddC γγA I

J

j
jU

1=

where regions jU  are as follows:

},..,1,
2

1
{ 2 jiCKKK

i
ii

j
i

i
ii =≤+ ∑∑ σ

χ
λ  and

jχ  are easily obtained from the following quadratic

equations:

      ∑ ∑
≤ ≤

+=
ji ji

iii
j

iiij K
C

K
C

2

2

11
σω

χ
λωχ

We expect that for Brownian sources approximation
(14) is in fact an identity and for general traffic
sources (14) closely approximates the capacity
region.  We also expect that for Brownian (arbitrary)
sources the capacity region can be realized (closely
approached) with the scheduling discipline

),..,;,..,( maxmax
1

maxmax
1 JJS ωωγγ .  This discipline can

be interpreted as a generalization of the EDD  with

service j  specific time scale: max
jj tt γτ =→  and

assuming that service j  specific deadline with

respect to the time scale jτ  is max
jω .

It can be shown that the region jU  can be closely

approximated by an appropriately chosen simplex:

},..,1,0,{ * jiKCeKK iji
i

ii =≥≤∑ , and,

consequently, the capacity region (13) can be
approximated by the J -dimensional polyhedron:

},..,1,0,{ * JjKCeKK jji
ji

ij =≥≤∑
≤

.  This

approximation is consistent with theoretical and
simulation results for specific scheduling disciplines
[6]-[7].

5. Example: Two Classes of Service, Brownian
Traffic Sources

  As an example consider a case of 2=J  classes of
service, and Brownian traffic sources.  We use the
same notations as in the previous section and assume
that 21 ωω ≤ .  Fig. 1 shows regions 1U , 2U  and

their intersection I 21 UU=A  in the following

three cases: (a) 1/ 12 =ωω , (b)  δωω << 12 /1 , and

(c)  δωω >12 /  where

(15)    )21(2
2
1

11

σ
ωλ

δ +=



Figure 1: Schematic view of the capacity region in a case

of two classes of service.

If 1/ 12 =ωω , then the capacity region

12 UU ⊂=A  has linear boundary since this case in

effect is a case of uniform QoS  requirements.  If

δωω << 12 /1 , then still 12 UU ⊂=A , but the

capacity region has non-linear boundary.  If
δωω >12 /  then 12 UU ⊄ , and the boundary

( DCB ) of the capacity region A  contains a linear
segment ( DC ).  The trapezoidal shape of the capac-
ity region in a case δωω >12 /  indicates that even

when the system is serving the maximum possible
number of high priority sources of class 1, the chan-
nel still has enough residual capacity to accommodate
certain number of sources of class 2  as low priority.
Examination of (15) shows that this is possible if the
high priority sources are burty and the difference in
the QoS  requirements for different services is suffi-

ciently large to allow for a squeezing of the low pri-
ority traffic between the bursts of the high priority
traffic.
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